Robustness and power of the maximum-likelihood-binomial and maximum-likelihood-score methods, in multipoint linkage analysis of affected-sibship data.
نویسندگان
چکیده
The maximum-likelihood-binomial (MLB) method, based on the binomial distribution of parental marker alleles among affected offspring, recently was shown to provide promising results by two-point linkage analysis of affected-sibship data. In this article, we extend the MLB method to multipoint linkage analysis, using the general framework of hidden Markov models. Furthermore, we perform a large simulation study to investigate the robustness and power of the MLB method, compared with those of the maximum-likelihood-score (MLS) method as implemented in MAPMAKER/SIBS, in the multipoint analysis of different affected-sibship samples. Analyses of multiple-affected sibships by means of the MLS were conducted by consideration of all possible sib pairs, with (weighted MLS [MLSw]) or without (unweighted MLS [MLSu]) application of a classic weighting procedure. In simulations under the null hypothesis, the MLB provided very consistent type I errors regardless of the type of family sample (sib pairs or multiple-affected sibships), as did the MLS for samples with sib pairs only. When samples included multiple-affected sibships, the MLSu led to inflation of low type I errors, whereas the MLSw yielded very conservative tests. Power comparisons showed that the MLB generally was more powerful than the MLS, except in recessive models with allele frequencies <.3. Missing parental marker data did not strongly influence type I error and power results in these multipoint analyses. The MLB approach, which in a natural way accounts for multiple-affected sibships and which provides a simple likelihood-ratio test for linkage, is an interesting alternative for multipoint analysis of sibships.
منابع مشابه
On Bivariate Generalized Exponential-Power Series Class of Distributions
In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...
متن کاملCase-deletion diagnostics for maximum likelihood multipoint quantitative trait locus linkage analysis.
OBJECTIVES Case-deletion diagnostic methods are tools that allow identification of influential observations that may affect parameter estimates and model fitting conclusions. The goal of this paper was to develop two case-deletion diagnostics, the exact case deletion (ECD) and the empirical influence function (EIF), for detecting outliers that can affect results of sib-pair maximum likelihood q...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملIdentifying the change time of multivariate binomial processes for step changes and drifts
In this paper, a new control chart to monitor multi-binomial processes is first proposed based on a transformation method. Then, the maximum likelihood estimators of change points designed for both step changes and linear-trend disturbances are derived. At the end, the performances of the proposed change-point estimators are evaluated and are compared using some Monte Carlo simulation experimen...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of human genetics
دوره 63 2 شماره
صفحات -
تاریخ انتشار 1998